Mixing via Thermocompositional Convection in Hybrid C/O/Ne White Dwarfs
26 Apr 2019The Astrophysical Journal, Volume 876, Issue 1, article id. 10, 9 pp.
Josiah Schwab and Pascale Garaud
Convective overshooting in super asymptotic giant branch stars has been suggested to lead to the formation of hybrid white dwarfs with carbon-oxygen cores and oxygen-neon mantles. As the white dwarf cools, this core-mantle configuration becomes convectively unstable and should mix. This mixing has been previously studied using stellar evolution calculations, but these made the approximation that convection did not affect the temperature profile of the mixed region. In this work, we perform direct numerical simulations of an idealized problem representing the core-mantle interface of the hybrid white dwarf. We demonstrate that, while the resulting structure within the convection zone is somewhat different than what is assumed in the stellar evolution calculations, the two approaches yield similar results for the size and growth of the mixed region. These hybrid white dwarfs have been invoked as progenitors of various peculiar thermonuclear supernovae. This lends further support to the idea that if these hybrid white dwarfs form, then they should be fully mixed by the time of explosion. These effects should be included in the progenitor evolution, in order to more accurately characterize the signatures of these events.