The Evolution and Fate of Super-Chandrasekhar Mass White Dwarf Merger Remnants
09 Sep 2016Monthly Notices of the Royal Astronomical Society, Volume 463, Issue 4, p.3461-3475
Josiah Schwab, Eliot Quataert, Daniel Kasen
We present stellar evolution calculations of the remnant of the merger of two carbon-oxygen white dwarfs (CO WDs). We focus on cases that have a total mass in excess of the Chandrasekhar mass. After the merger, the remnant manifests as an $L \sim 3\times 10^4 L_\odot$ source for $\sim 10^4$ yr. A dusty wind may develop, leading these sources to be self-obscured and to appear similar to extreme AGB stars. Roughly $\sim 10$ such objects should exist in the Milky Way and M31 at any time. As found in previous work, off-center carbon fusion is ignited within the merger remnant and propagates inward via a carbon flame, converting the WD to an oxygen-neon (ONe) composition. By following the evolution for longer than previous calculations, we demonstrate that after carbon-burning reaches the center, neutrino-cooled Kelvin-Helmholtz contraction leads to off-center neon ignition in remnants with masses $\ge 1.35 M_\odot$. The resulting neon-oxygen flame converts the core to a silicon WD. Thus, super-Chandrasekhar WD merger remnants do not undergo electron-capture induced collapse as traditionally assumed. Instead, if the remnant mass remains above the Chandrasekhar mass, we expect that it will form a low-mass iron core and collapse to form a neutron star. Remnants that lose sufficient mass will end up as massive, isolated ONe or Si WDs.