# Single and Double Degenerate Pathways towards Accretion-Induced Collapse

with L. Bildsten, E. Quataert & others

Josiah Schwab 06 November 2015 Accretion-induced collapse (AIC) occurs when an O/Ne WD reaches a critical mass.



Multiple channels are thought to lead to AIC.

Single-Degenerate

WD He

Double-Degenerate

Multiple channels are thought to lead to AIC.

Single-Degenerate

WD He

or



Double-Degenerate

Multiple channels are thought to lead to AIC.



No direct observations of AIC have yet been made.

▶ Models of the collapse of a massive WD to form a neutron star (NS) produce a weak explosion and  $\sim 10^{-3} M_{\odot}$  of Ni-rich ejecta.

Woosley & Baron (1992); Dessart et al. (2006);

No direct observations of AIC have yet been made.

▶ Models of the collapse of a massive WD to form a neutron star (NS) produce a weak explosion and  $\sim 10^{-3} M_{\odot}$  of Ni-rich ejecta.

Woosley & Baron (1992); Dessart et al. (2006);

- Other radio, optical, and X-ray signatures have been predicted, but depend on whether
  - the progenitor systems have surrounding material
  - other aspects of the evolution synthesize Ni-56
  - ► the newly formed NS is a magnetar

Piro & Kulkarni (2013); Metzger & Bower (2014)

#### Overview

# Single Degenerates The physics of the key weak reactions Thermal evolution of accreting ONe WDs Collapse to a neutron star

Double Degenerates

Summary and Conclusions

Weak reactions will drive the evolution.

# Electron capture $(Z,A) + e^- \rightarrow (Z-1,A) + \nu_e$ Beta decau $(Z-1,A) \rightarrow (Z,A) + e^- + \bar{\nu}_e$

## The WD is a cold, electron-degenerate plasma.



## The electron Fermi energy is $\sim$ MeV and rising.



### Electron-capture reactions can now occur.



## Beta-decay reactions can also still occur.



This "Urca process" cools the plasma.



## It shuts off above the threshold density.





# The ground state transition is highly forbidden.



### Electron-captures are into an excited state.



# Emission of a gamma-ray heats the plasma.



#### Overview

# Single Degenerates The physics of the key weak reactions Thermal evolution of accreting ONe WDs Collapse to a neutron star

Double Degenerates

Summary and Conclusions

Initially, the temperature is set by a balance between compression and neutrino cooling.



# Substantial Urca-process cooling occurs associated with the A = 23 and A = 25 isotopes.



# This shuts off neutrino cooling and the material evolves along an adiabat.



# Substantial heating also occurs associated with the A = 24 isotopes.



Urca-process cooling will set the temperature at the onset of captures on  $^{20}$ Ne.



Captures on <sup>20</sup>Ne are exothermic; this heating will ignite oxygen fusion.



#### Overview

### Single Degenerates

The physics of the key weak reactions Thermal evolution of accreting ONe WDs Collapse to a neutron star

Double Degenerates

Summary and Conclusions

A thermal runaway develops in the core; but convection is not triggered in the core.



This will lead to the formation

of an outgoing oxygen deflagration wave.



There is a competition between the deflagration and the weak reactions occurring in its ashes.



This work provides an analytic understanding of the evolution of ONe WDs evolving towards accretion-induced collapse.

- This work provides an analytic understanding of the evolution of ONe WDs evolving towards accretion-induced collapse.
- We demonstrated the presence of a thermal runaway in the core, which will trigger an oxygen deflagration at a density such that collapse to a neutron star is likely.

- This work provides an analytic understanding of the evolution of ONe WDs evolving towards accretion-induced collapse.
- We demonstrated the presence of a thermal runaway in the core, which will trigger an oxygen deflagration at a density such that collapse to a neutron star is likely.
- This enables the generation of more realistic progenitor models for studies of the observational signatures of AIC.

Overview

Single Degenerates

# Double Degenerates Introduction to WD+WD mergers The viscous evolution of WD merger remnants The thermal evolution of WD merger remnants

Summary and Conclusions









There are WD+WD binaries that will merge; the rate in the Milky Way is ~1 per century.



Badenes & Maoz (2012); ELM: Gianninas et al. (2015)

#### There are a wide variety of post-merger outcomes.



e.g., Webbink (1984), ... ; Fig. from Dan et al. (2014)

Today, I will focus on the merger of two CO WDs, with a total mass above the Chandrasekhar mass.



The primary WD remains relatively undisturbed; The secondary WD is disrupted, forming a disk.



Fig. from Dan et al. (2011)

The evolution can be divided into three phases with well-separated timescales.

Dynamical Time (min)

Completion of merger

Viscous Time (hr)

Redistribute ang. mom.

Thermal Time (kyr)

Radiate away energy

Shen et al. (2012); Schwab et al. (2012)

Overview

Single Degenerates

Double Degenerates Introduction to WD+WD mergers The viscous evolution of WD merger remnants The thermal evolution of WD merger remnants

Summary and Conclusions

# The remnant is unstable to the MRI and evolves viscously before cooling significantly.

z [10<sup>9</sup> cm]



Schwab et al. (2012)

t = 0 s

# The remnant is unstable to the MRI and evolves viscously before cooling significantly.

t = 1000 s



Schwab et al. (2012)

$$z [10^9 \text{ cm}]$$
  
 $\phi \xrightarrow{\bullet} R [10^9 \text{ cm}]$ 

# The remnant is unstable to the MRI and evolves viscously before cooling significantly.

t = 10000 s



 $z [10^9 \text{ cm}]$  $\phi \xrightarrow{\uparrow} R [10^9 \text{ cm}]$ 

Schwab et al. (2012)

The viscous heating ignites carbon fusion off-center in the remnant.



Schwab et al. (2012)

Energy generation and heat transport will drive the next phase of evolution.



Overview

Single Degenerates

Double Degenerates Introduction to WD+WD mergers The viscous evolution of WD merger remnants The thermal evolution of WD merger remnants

Summary and Conclusions

I map the output of the hydro simulations into the MESA stellar evolution code.



A convectively-bounded carbon deflagration forms and propagates inward.



 $\operatorname{time}\left[\operatorname{years}\right]$ 

# The flame reaches the center; the material is oxygen-neon and non-degenerate.



# Then the remnant undergoes a phase of Kelvin-Helmholtz contraction.



# The KH contraction is neutrino-cooled and leads to off-center neon ignition.



Fig. adapted from Nomoto (1984)

# The KH contraction is neutrino-cooled and leads to off-center neon ignition.



Fig. adapted from Nomoto (1984)

The KH contraction is neutrino-cooled and leads to off-center neon ignition.



Fig. adapted from Nomoto (1984)

# A convectively-bounded neon deflagration forms and propagates inward.



The outcome depends on the central composition; does the off-center burning reach the center?

Core-collapse



Schwab+ (in prep)

The outcome depends on the central composition; does the off-center burning reach the center?

# Electron-capture Core-collapse



Schwab+ (2015)

Schwab+ (in prep)

The outcome depends on the central composition; does the off-center burning reach the center?



- A double white dwarf system that merges goes through three phases:
  - dynamical phase (merger)
  - viscous phase (rapid redistribution of ang. mom.)
  - thermal phase (readjustment and stellar evolution)

- A double white dwarf system that merges goes through three phases:
  - dynamical phase (merger)
  - viscous phase (rapid redistribution of ang. mom.)
  - thermal phase (readjustment and stellar evolution)
- Connecting simulations of each phase enables studies of the long-term evolution.

- A double white dwarf system that merges goes through three phases:
  - dynamical phase (merger)
  - viscous phase (rapid redistribution of ang. mom.)
  - thermal phase (readjustment and stellar evolution)
- Connecting simulations of each phase enables studies of the long-term evolution.
- For super-Chandrasekhar WD mergers, the likely fate is collapse to a neutron star; the evolution towards collapse appears to be more complicated than previously understood.

# Neon flame structure



## He + ONe Binares (Jared Brooks)



## He + ONe Binares (Jared Brooks)

