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Accretion-induced collapse (AIC) occurs

when an O/Ne WD reaches a critical mass.




Multiple channels are thought to lead to AIC.
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No direct observations of AIC have yet been made.

Models of the collapse of a massive WD to form
a neutron star (NS) produce a weak explosion
and ~ 1073 M, of Ni-rich ejecta.

Woosley & Baron (1992); Dessart et al. (2006);



No direct observations of AIC have yet been made.
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Other radio, optical, and X-ray signatures have
been predicted, but depend on whether
the progenitor systems have surrounding material
other aspects of the evolution synthesize Ni-56

the newly formed NS is a magnetar

Piro & Kulkarni (2013); Metzger & Bower (2014)



Single Degenerates
The physics of the key weak reactions



Weak reactions will drive the evolution.

Electron capture

(Z,A)+e —(Z—1,A)+ .

Beta decay
(Z—-1,A) = (Z,A)+e + 7



The WD is a cold, electron-degenerate plasma.
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The electron Fermi energy is ~ MeV and rising.
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Electron-capture reactions can now occur.
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Beta-decay reactions can also still occur.
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This "Urca process” cools the plasma.
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It shuts
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The ground state transition is highly forbidden.
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Electron-captures are into an excited state.
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Emission of a gamma-ray heats the plasma.
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Single Degenerates

Thermal evolution of accreting ONe WDs



Initially, the temperature is set by a balance

between compression and neutrino cooling.

= I T T T T T : : | | |
| ]
L AHractor e T
4 IS
: e
N
N :
i e
..................... Ad'\abat
i ]
~
ol b b b b b b b b e b 1y

9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0
log pc [g em™]



Substantial Urca-process cooling occurs
associated with the A =23 and A = 25 isotopes.
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This shuts off neutrino cooling

and the material evolves along an adiabat.
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Substantial heating also occurs
associated with the A = 24 isotopes.
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Urca-process cooling will set the temperature

at the onset of captures on *°Ne.
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Captures on *®Ne are exothermic;

this heating will ignite oxygen fusion.
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Single Degenerates

Collapse to a neutron star



A thermal runaway develops in the core;

but convection is not triggered in the core.
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This will lead to the formation

of an outgoing oxygen deflagration wave.
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There is a competition between the deflagration

and the weak reactions occurring in its ashes.
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This work provides an analytic understanding of
the evolution of ONe WDs evolving towards
accretion-induced collapse.
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runaway in the core, which will trigger an
oxygen deflagration at a density such that
collapse to a neutron star is likely.



This work provides an analytic understanding of
the evolution of ONe WDs evolving towards
accretion-induced collapse.

We demonstrated the presence of a thermal
runaway in the core, which will trigger an
oxygen deflagration at a density such that
collapse to a neutron star is likely.

This enables the generation of more realistic
progenitor models for studies of the
observational signatures of AIC.



Double Degenerates
Introduction to WD+WD mergers



How would a WD merger evolve towards AlC?
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There are WD+WD binaries that will merge;
the rate in the Milky Way is ~1 per century.
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There are a wide variety of post-merger outcomes.
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Today, | will focus on the merger of two CO WDs,
with a total mass above the Chandrasekhar mass.
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The primary WD remains relatively undisturbed;

The secondary WD is disrupted, forming a disk.

Fig. from Dan et al. (2011)



The evolution can be divided into three phases

with well-separated timescales.

Dynamical Time (min)

Completion of merger
Viscous Time (hr)
Redistribute ang. mom.

Thermal Time (kyr)

Radiate away energy

Shen et al. (2012); Schwab et al. (2012)




Double Degenerates

The viscous evolution of WD merger remnants



The remnant is unstable to the MRI

and evolves viscously before cooling significantly.
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The remnant is unstable to the MRI

and evolves viscously before cooling significantly.
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The remnant is unstable to the MRI

and evolves viscously before cooling significantly.
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The viscous heating ignites carbon fusion

off-center in the remnant.
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Energy generation and heat transport

will drive the next phase of evolution.

| 0.9 solar masses

| 0.6 solar masses
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Double Degenerates

The thermal evolution of WD merger remnants



| map the output of the hydro simulations
into the MESA stellar evolution code.
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A convectively-bounded carbon deflagration forms

and propagates inward.
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The flame reaches the center;
the material is oxygen-neon and non-degenerate.
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Then the remnant undergoes a phase
of Kelvin-Helmholtz contraction.
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The KH contraction is neutrino-cooled

and leads to off-center neon ignition.
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The KH contraction is neutrino-cooled
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A convectively-bounded neon deflagration forms

and propagates inward.
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The outcome depends on the central composition;

does the off-center burning reach the center?

Core-collapse

Schwab+ (in prep)
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Electron-capture  Core-collapse

Schwab+ (2015) Schwab+ (in prep)



The outcome depends on the central composition;

does the off-center burning reach the center?

Hybrid la Electron-capture  Core-collapse

Denissenkov+ (2013) Schwab+ (2015) Schwab+ (in prep)



A double white dwarf system that merges goes
through three phases:

dynamical phase (merger)

viscous phase (rapid redistribution of ang. mom.)

thermal phase (readjustment and stellar evolution)
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Connecting simulations of each phase enables
studies of the long-term evolution.



A double white dwarf system that merges goes
through three phases:

dynamical phase (merger)

viscous phase (rapid redistribution of ang. mom.)

thermal phase (readjustment and stellar evolution)

Connecting simulations of each phase enables
studies of the long-term evolution.

For super-Chandrasekhar WD mergers, the
likely fate is collapse to a neutron star; the
evolution towards collapse appears to be more
complicated than previously understood.






Neon flame structure
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He + ONe Binares (Jared Brooks)
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He + ONe Binares (Jared Brooks)

Carbon Shell Pulses
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