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Accretion-induced collapse (AIC) occurs
when an O/Ne WD reaches a critical mass.
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No direct observations of AIC have yet been made.
I Models of the collapse of a massive WD to form

a neutron star (NS) produce a weak explosion
and ∼ 10−3 M� of Ni-rich ejecta.

Woosley & Baron (1992); Dessart et al. (2006);

I Other radio, optical, and X-ray signatures have
been predicted, but depend on whether

I the progenitor systems have surrounding material
I other aspects of the evolution synthesize Ni-56
I the newly formed NS is a magnetar

Piro & Kulkarni (2013); Metzger & Bower (2014)
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The goal of this work is to improve our
understanding of the signatures of AIC by
improving the modeling of the evolution
preceeding the collapse to a neutron star.
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Weak reactions will drive the evolution.

Electron capture
(Z ,A) + e−→ (Z − 1,A) + νe

Beta decay
(Z − 1,A)→ (Z ,A) + e− + ν̄e



The WD is a cold, electron-degenerate plasma.
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The electron Fermi energy is ∼ MeV and rising.
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Electron-capture reactions can now occur.
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Beta-decay reactions can also still occur.
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This "Urca process" cools the plasma.
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It shuts off above the threshold density.

➤

occupation fraction

Ele
ctro

nE
ner

gy
[Me

V]

0.0 0.4 0.8

1
2

3
4

5
6

7
8

Nu
cle

ar
En

erg
y[M

eV]

23Ne

23Na

e-capture

1
2

3
4

5
6

7
8



occupation fraction

Ele
ctro

nE
ner

gy
[Me

V]

0.0 0.4 0.8

1
2

3
4

5
6

7
8

Nu
cle

ar
En

erg
y[M

eV]

24Na

24Mg

1
2

3
4

5
6

7
8



The ground state transition is highly forbidden.
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Electron-captures are into an excited state.
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Emission of a gamma-ray heats the plasma.
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Initially, the temperature is set by a balance
between compression and neutrino cooling.
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Substantial Urca-process cooling occurs
associated with the A = 23 and A = 25 isotopes.
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This shuts off neutrino cooling
and the material evolves along an adiabat.
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Substantial heating also occurs
associated with the A = 24 isotopes.
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Urca-process cooling will set the temperature
at the onset of captures on 20Ne.
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Captures on 20Ne are exothermic;
this heating will ignite oxygen fusion.
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A thermal runaway develops in the core;
but convection is not triggered in the core.
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This will lead to the formation
of an outgoing oxygen deflagration wave.



There is a competition between the deflagration
and the weak reactions occurring in its ashes.

Mr = 0 Mr ≈ 0.3M�

NSE ONe

ν

ν



I This work provides an analytic understanding of
the evolution of ONe WDs evolving towards
accretion-induced collapse.

I We demonstrated the presence of a thermal
runaway in the core, which will trigger an
oxygen deflagration at a density such that
collapse to a neutron star is likely.

I This enables the generation of more realistic
progenitor models for studies of the
observational signatures of AIC.
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This understanding is being applied
to simulations of He star + ONe WD binaries.

work by Jared Brooks
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How would a WD merger evolve towards AIC?
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There are WD+WD binaries that will merge;
the rate in the Milky Way is ~1 per century.

Badenes & Maoz (2012); ELM: Gianninas et al. (2015)



There are a wide variety of post-merger outcomes.

CO-detonations
single-det. 

(1991bg-like SN)

SN Ia
~10  yr5

He-rich sdO         HeCO
~10  yr7

sdB         HeCO
~10  yr8

7

R Coronae Borealis~10  yr CO

single-det.
interm. phase RCB

(non-standard Ia later?)

M
   =1.4
tot

double-det.
(SN Ia)

double-det. 
supra-Ch. SN

AIC
~10  yr

4

(interm. phase RCB)

e.g., Webbink (1984), ... ; Fig. from Dan et al. (2014)



Today, I will focus on the merger of two CO WDs,
with a total mass above the Chandrasekhar mass.



The primary WD remains relatively undisturbed;
The secondary WD is disrupted, forming a disk.

Fig. from Dan et al. (2011)



The evolution can be divided into three phases
with well-separated timescales.
Dynamical Time (min)
Completion of merger

Viscous Time (hr)
Redistribute ang. mom.

Thermal Time (kyr)
Radiate away energy

Shen et al. (2012); Schwab et al. (2012)
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The remnant is unstable to the MRI
and evolves viscously before cooling significantly.

z [109 cm]
R [109 cm]

φ

Schwab et al. (2012)



The remnant is unstable to the MRI
and evolves viscously before cooling significantly.

z [109 cm]
R [109 cm]

φ

Schwab et al. (2012)
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The viscous heating ignites carbon fusion
off-center in the remnant.
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Energy generation and heat transport
will drive the next phase of evolution.
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I map the output of the hydro simulations
into the MESA stellar evolution code.
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A convectively-bounded carbon deflagration forms
and propagates inward.



The flame reaches the center;
the material is oxygen-neon and non-degenerate.
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Then the remnant undergoes a phase
of Kelvin-Helmholtz contraction.



The KH contraction is neutrino-cooled
and leads to off-center neon ignition.

Fig. adapted from Nomoto (1984)
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The KH contraction is neutrino-cooled
and leads to off-center neon ignition.

Fig. adapted from Nomoto (1984)



A convectively-bounded neon deflagration forms
and propagates inward.



The outcome depends on the central composition;
does the off-center burning reach the center?
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I A double white dwarf system that merges goes
through three phases:

I dynamical phase (merger)
I viscous phase (rapid redistribution of ang. mom.)
I thermal phase (readjustment and stellar evolution)

I Connecting simulations of each phase enables
studies of the long-term evolution.

I For super-Chandrasekhar WD mergers, the
likely fate is collapse to a neutron star; the
evolution towards collapse appears to be more
complicated than previously understood.
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I This work enables evolution of systems
with an accreting ONe WD in MESA.

I This work makes predictions about the
observable properties of WD merger
remnants during the phase preceeding
the collapse to a neutron star.
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Neon flame structure

rflame = 253 km

Mflame = 0.001M�

−1000 −500 0 500 1000

1
2

3
4

5

r - rflame [cm]

T9

ρ7

εnuc,15

o16

ne20

si28



He + ONe Binares (Jared Brooks)
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