The evolution and fate of super-Chandrasekhar mass white dwarf merger remnants

with E. Quataert, D. Kasen & others

Josiah Schwab 13 March 2017

A WD+WD merger can be broken to stages, each with well-separated timescales.

Dynamical Time (min)

Completion of merger $t_{\text{dun}} \sim P_{\text{orb}}$

Viscous Time (hr)

Redistribute ang. mom. $t_{\rm visc} \sim \alpha^{-1} P_{\rm orb}$

Thermal Time (kyr)

Radiate away energy $t_{\text{therm}} \sim E/L$

Studying each stage requires different approaches, but we can chain them together.

There are a wide variety of possible outcomes depending on the masses of the WDs.

Double white dwarf mergers evolve towards a thermally-supported, spherical state.

see Shen et al. (2012); Schwab et al. (2012)

Previous work has taken several approaches.

Model merger as accretion on cold WD

Nomoto & Iben (1985); Saio & Nomoto (1985) Finds off-center carbon ignition before core ignition (so no la; instead massive ONe core \rightarrow NS).

Previous work has taken several approaches.

Model merger as accretion on cold WD

Nomoto & Iben (1985); Saio & Nomoto (1985) Finds off-center carbon ignition before core ignition (so no la; instead massive ONe core \rightarrow NS).

Use initial conditions from SPH merger sims

Yoon et al. (2007)

Can avoid off-center carbon ignition if angular momentum transport slow compared to neutrino cooling. (This seems unlikely to me, given MRI.) A convectively-bounded carbon deflagration forms and propagates inward, reaching the center.

time [years]

Post-merger there is a cool, giant phase, but the carbon-burning is too deep to sustain it.

Then the remnant undergoes a phase of Kelvin-Helmholtz contraction.

A neon-oxygen deflagration forms and propagates inward, burning to Si-group.

A key uncertainty in our calculations is the amount of mass loss during the evolution.

Effect on final fate

If mass loss causes the remnant to become sub-Chandrasekhar, then the end product may be a massive WD (and not a NS).

A key uncertainty in our calculations is the amount of mass loss during the evolution.

Effect on final fate

If mass loss causes the remnant to become sub-Chandrasekhar, then the end product may be a massive WD (and not a NS).

Effects on observational manifestation

 \triangleright The material shed would be primarily carbon/oxygen and which could cause the remnant to be obscured by a dusty wind.

 \triangleright For super-Chandrasekhar WD mergers, the likely fate is collapse to a neutron star, though the collapse may not occur via an O/Ne core.

- \triangleright For super-Chandrasekhar WD mergers, the likely fate is collapse to a neutron star, though the collapse may not occur via an O/Ne core.
- \triangleright We've outlined the observational signatures of the merger remnants during the pre-collapse phase. ($L \sim 3 \times 10^4$ L_⊙, lifetime $\sim 10^4$ ur, dustu?)
- \blacktriangleright For super-Chandrasekhar WD mergers, the likely fate is collapse to a neutron star, though the collapse may not occur via an O/Ne core.
- \triangleright We've outlined the observational signatures of the merger remnants during the pre-collapse phase. ($L \sim 3 \times 10^4$ L_⊙, lifetime $\sim 10^4$ yr, dusty?)
- \triangleright At the time of collapse there won't be an extended envelope to capture the energy of the explosion (so the signature of the NS formation is likely faint and fast).

 \triangleright To self-consistently follow the long-term outcomes of WD mergers, you need to combine multi-dimensional hydrodynamics simulations and stellar evolution calculations.

- \triangleright To self-consistently follow the long-term outcomes of WD mergers, you need to combine multi-dimensional hydrodynamics simulations and stellar evolution calculations.
- \triangleright Most broadly, I've been working to develop the tools and formalism necessary to take output from WD merger simulations and follow the remnants to their final fates.

