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There are WD+WD binaries that will merge;
the rate in the Milky Way is ~1 per century.
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There are a wide variety of post-merger outcomes.
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Today, | will focus on the merger of two CO WDs,
with a total mass above the Chandrasekhar mass.
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The primary WD remains relatively undisturbed;

The secondary WD is disrupted, forming a disk.

Fig. from Dan et al. (2011)



The evolution can be divided into three phases

with well-separated timescales.

Dynamical Time (min)

Completion of merger
Viscous Time (hr)
Redistribute ang. mom.

Thermal Time (kyr)

Radiate away energy

Shen et al. (2012); Schwab et al. (2012)




The Viscous Evolution of WD Merger Remnants



The remnant is unstable to the MRI

and evolves viscously before cooling significantly.
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The remnant is unstable to the MRI

and evolves viscously before cooling significantly.
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The remnant is unstable to the MRI

and evolves viscously before cooling significantly.
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The viscous heating ignites carbon fusion

off-center in the remnant.
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Energy generation and heat transport

will drive the next phase of evolution.
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The Thermal Evolution of WD Merger Remnants



This doesn’'t make a Type la supernova.
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| map the output of the hydro simulations
into the MESA stellar evolution code.
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A convectively-bounded carbon deflagration forms

and propagates inward.
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The flame reaches the center;
the material is oxygen-neon and non-degenerate.
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Then the remnant undergoes a phase
of Kelvin-Helmholtz contraction.
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The KH contraction is neutrino-cooled

and leads to off-center neon ignition.
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The KH contraction is neutrino-cooled
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The KH contraction is neutrino-cooled

and leads to off-center neon ignition.
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A convectively-bounded neon deflagration forms

and propagates inward.
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The outcome depends on the central composition;

does the off-center burning reach the center?

Core-collapse

Schwab+ (in prep)
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The outcome depends on the central composition;

does the off-center burning reach the center?

Hybrid la Electron-capture  Core-collapse

Denissenkov+ (2013) Schwab+ (2015) Schwab+ (in prep)



Summary and Conclusions



A double white dwarf system that merges goes
through three phases:

dynamical phase (merger)

viscous phase (rapid redistribution of ang. mom.)

thermal phase (readjustment and stellar evolution)
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Connecting simulations of each phase enables
studies of the long-term evolution.
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For super-Chandrasekhar WD mergers, the
likely fate is collapse to a neutron star; the
evolution towards collapse appears to be more
complicated than previously understood.
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