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Accretion-induced collapse (AIC) occurs
when an O/Ne WD reaches a critical mass.
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No direct observations of AIC have yet been made.
I Models of the collapse of a massive WD to form

a neutron star (NS) produce a weak explosion
and ∼ 10−3 M� of Ni-rich ejecta.

Woosley & Baron (1992); Dessart et al. (2006);

I Other radio, optical, and X-ray signatures have
been predicted, but depend on whether

I the progenitor systems have surrounding material
I other aspects of the evolution synthesize Ni-56
I the newly formed NS is a magnetar

Piro & Kulkarni (2013); Metzger & Bower (2014)
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Our goal is to comprehensively re-address AIC
in order to develop a modern understanding of
progenitor systems, which will provide much-
needed initial models for predictions of the
lightcurves and spectra.
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The WD is a cold, electron-degenerate plasma;
the electron Fermi energy is ∼ MeV and rising.
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At some particular densities the plasma is cooled
by emission of Urca-process neutrinos.
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At some particular densities the plasma is heated
by emission of gamma-rays.
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Initially, the temperature is set by a balance
between compression and neutrino cooling.
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Substantial Urca-process cooling occurs
associated with the A = 23 and A = 25 isotopes.
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This shuts off neutrino cooling
and the material evolves along an adiabat.
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Substantial heating also occurs
associated with the A = 24 isotopes.
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Urca-process cooling will set the temperature
at the onset of captures on 20Ne.
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Electron captures on 20Ne are exothermic;
this heating will ignite oxygen fusion.
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A thermal runaway develops in the core;
but convection is not triggered in the core.
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This will lead to the formation
of an outgoing oxygen deflagration wave.



I MESA now includes suitable versions of the
key weak reaction rates.

I This work provides an analytic understanding of
the evolution of ONe WDs evolving towards
accretion-induced collapse.

I We demonstrated the presence of a thermal
runaway in the core, which will trigger an
oxygen deflagration at a density such that
collapse to a neutron star is likely.
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Thermal timescale mass transfer gives Ṁ values
in the regime for stable He burning.

HeWD

Work led by Jared Brooks; Fig. by Jared Brooks



We evolve both stars plus their orbit;
there is stable He burning, plus carbon flashes.

Work led by Jared Brooks; Fig. by Jared Brooks
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Double white dwarf mergers evolve towards
a thermally-supported, spherical state.

WD + WD

=

WD
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A convectively-bounded carbon deflagration forms
and propagates inward, reaching the center.



Then the remnant undergoes a phase
of Kelvin-Helmholtz contraction.



A convectively-bounded neon deflagration forms
and propagates inward.



The outcome depends on the central composition;
does the off-center burning reach the center?
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I We’ve evolved single and double degenerate
progenitors beginning from "early" phases up to
the beginning of collapse.

I For super-Chandrasekhar WD mergers, the
likely fate is collapse to a neutron star, though
the collapse may not occur via an O/Ne core.
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We have been performing simulations relevant to
mixing in convectively-bounded deflagrations.

I Cartesian box
I Boussinesq

approximation
I spectral method

(Dedalus code)

Work led by Daniel Lecoanet



Movie 1: Buoyancy Field

Simulation by Daniel Lecoanet



Movie 2: Diffusion model

Simulation by Daniel Lecoanet



Simulation Summary

I A model which treats the mixing as diffusive
appears to be able to reproduce the results of
the 3D calculation.

I The diffusion coefficient already begins to fall
within the convection zone and has declined
sharply by the location of neutral buoyancy;
we see little mixing across the flame.
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